
ECE-7th sem. CAO-Unit 6

Pipeline and Vector Processing
Dr.E V Prasad

12.10.17

Contents
 Parallel Processing
 Pipelining
 Arithmetic Pipeline
 Instruction Pipeline
 RISC Pipeline
 Vector Processing
 Array Processors

 Parallel Processing
 Pipelining
 Arithmetic Pipeline
 Instruction Pipeline
 RISC Pipeline
 Vector Processing
 Array Processors

Parallel Processing

Introduction
 Parallel processing is a term used to denote a large class

of techniques that are used to provide simultaneous
data-processing tasks for the purpose of increasing
the computational speed of a computer system.

 The purpose of parallel processing is to speed up the
computer processing capability and increase its
throughput, that is, the amount of processing that can
be accomplished during a given interval of time.

 The amount of hardware increases with parallel
processing, and with it, the cost of the system increases.

 Parallel processing is a term used to denote a large class
of techniques that are used to provide simultaneous
data-processing tasks for the purpose of increasing
the computational speed of a computer system.

 The purpose of parallel processing is to speed up the
computer processing capability and increase its
throughput, that is, the amount of processing that can
be accomplished during a given interval of time.

 The amount of hardware increases with parallel
processing, and with it, the cost of the system increases.

Introduction(cont.)
 Parallel processing can be viewed from various levels of

complexity.
 At the lowest level, we distinguish between parallel and serial operations

by the type of registers used.
e.g. shift registers and registers with parallel load

 At a higher level, it can be achieved by having a multiplicity of functional
units that perform identical or different operations simultaneously.

 Shows one possible way of separating the execution unit into
eight functional units (FUs or PEs or PU) operating in parallel.
 A multifunctional organization is usually associated with a complex

control unit to coordinate all the activities among the various
components.

 Parallel processing can be viewed from various levels of
complexity.
 At the lowest level, we distinguish between parallel and serial operations

by the type of registers used.
e.g. shift registers and registers with parallel load

 At a higher level, it can be achieved by having a multiplicity of functional
units that perform identical or different operations simultaneously.

 Shows one possible way of separating the execution unit into
eight functional units (FUs or PEs or PU) operating in parallel.
 A multifunctional organization is usually associated with a complex

control unit to coordinate all the activities among the various
components.

Processor with multiple functional units

Adder-subtractor

Integer multiply

Logic unit

 separate execution
unit into more PEs
to operate in
parallel.

 CU coordinates all
the activities among
PEs.

 more PEs- more
parallelism - more
complex CU

To memory

Processor
register

Shift unit

Incrementer

Floating-point
add-subtract
Floating-point

multiply

Floating-point
divide Fig. 1

 separate execution
unit into more PEs
to operate in
parallel.

 CU coordinates all
the activities among
PEs.

 more PEs- more
parallelism - more
complex CU

Introduction(cont.)
 There are a variety of ways that parallel processing can be

classified.
 Internal organization of the processors
 Interconnection structure between processors
 The flow of information through the system

 M. J. Flynn considers the organization of a computer system
by the number of instructions (instruction stream) and data
items (data stream) that are manipulated simultaneously.

 There are a variety of ways that parallel processing can be
classified.
 Internal organization of the processors
 Interconnection structure between processors
 The flow of information through the system

 M. J. Flynn considers the organization of a computer system
by the number of instructions (instruction stream) and data
items (data stream) that are manipulated simultaneously.

Flynn's classification
- Based on the multiplicity of Instruction Streams and Data Streams
Instruction Stream

Sequence of Instructions read from memory
Data Stream
Operations performed on the data in the processor

Architectural Classification

Flynn's classification
- Based on the multiplicity of Instruction Streams and Data Streams
Instruction Stream

Sequence of Instructions read from memory
Data Stream
Operations performed on the data in the processor

PARALLEL COMPUTERS

Number of
Instruction
Streams

Single

Multiple

Single

SISD

MISD

Multiple

SIMD

MIMD

Number of Data Streams

SISD
 Represents the organization of a single computer containing

a control unit, a processor unit, and a memory unit.
 Instructions are executed sequentially and the system may

or may not have internal parallel processing capabilities.
 parallel processing may be achieved by means of multiple

functional units or by pipeline processing.

 Represents the organization of a single computer containing
a control unit, a processor unit, and a memory unit.

 Instructions are executed sequentially and the system may
or may not have internal parallel processing capabilities.

 parallel processing may be achieved by means of multiple
functional units or by pipeline processing.

SIMD

 Represents an organization that includes many
processing units under the supervision of a common
control unit.

 All processors receive the same instruction from the
control unit but operate on different items of data.

 The shared memory unit must contain multiple
modules so that it can communicate with all the
processors simultaneously.

 Represents an organization that includes many
processing units under the supervision of a common
control unit.

 All processors receive the same instruction from the
control unit but operate on different items of data.

 The shared memory unit must contain multiple
modules so that it can communicate with all the
processors simultaneously.

MISD & MIMD
 MISD structure is only of theoretical interest since no

practical system has been constructed using this
organization.

 MIMD organization refers to a computer system capable of
processing several programs at the same time. e.g.
multiprocessor and multicomputer system

 Flynn’s classification depends on the distinction between
the performance of the control unit and the data-
processing unit.
 It emphasizes the behavioral characteristics of the

computer system rather than its operational and
structural interconnections.

 MISD structure is only of theoretical interest since no
practical system has been constructed using this
organization.

 MIMD organization refers to a computer system capable of
processing several programs at the same time. e.g.
multiprocessor and multicomputer system

 Flynn’s classification depends on the distinction between
the performance of the control unit and the data-
processing unit.
 It emphasizes the behavioral characteristics of the

computer system rather than its operational and
structural interconnections.

Flynn’s taxonomy

... MU
PUCU MUSI

SD
MD

CU

CU

PU

PU

PU

I D
SISD

SIMD

I ID

D
I

...

MU...
MI

... MU...

CU

CU

CU

CU

CU

PU

PU

PU
PU

PU

MISD MIMD

D

D
DI

I

I

CU– control unit ; PU – processing unit (ALU) ; MU – memory Unit

Introduction(cont.)
 One type of parallel processing that does not fit Flynn’s

classification is pipelining.
 We consider parallel processing under the following main

topics:
 Pipeline processing

 Is an implementation technique where arithmetic sub-operations or the
phases of a computer instruction cycle overlap in execution.

 Vector processing
 Deals with computations involving large vectors and matrices.

 Array processing
 Perform computations on large arrays of data.

 One type of parallel processing that does not fit Flynn’s
classification is pipelining.

 We consider parallel processing under the following main
topics:
 Pipeline processing

 Is an implementation technique where arithmetic sub-operations or the
phases of a computer instruction cycle overlap in execution.

 Vector processing
 Deals with computations involving large vectors and matrices.

 Array processing
 Perform computations on large arrays of data.

Pipelining

Pipelining
• Pipelining is a technique of decomposing a sequential

process into sub-operations (segments)

• Divide the processor into segment processors each one is
dedicated to a particular segment.

• Each segment is executed in a dedicated segment-
processor operates concurrently with all other segments.

• Information flows through these multiple hardware
segments.

• The overlapping of computation is made possible by
associating a register with each segment in the pipeline.

• The registers provide isolation between each segment so
that each can operate on distinct data simultaneously

• Pipelining is a technique of decomposing a sequential
process into sub-operations (segments)

• Divide the processor into segment processors each one is
dedicated to a particular segment.

• Each segment is executed in a dedicated segment-
processor operates concurrently with all other segments.

• Information flows through these multiple hardware
segments.

• The overlapping of computation is made possible by
associating a register with each segment in the pipeline.

• The registers provide isolation between each segment so
that each can operate on distinct data simultaneously

Pipelining(cont.)

 Perhaps the simplest way of viewing the pipeline structure is to
imagine that each segment consists of an input register
followed by a combinational circuit.
 The register holds the data.
 The combinational circuit performs the sub-operation in the

particular segment.
 A clock is applied to all registers after enough time has elapsed

to perform all segment activity.

 Perhaps the simplest way of viewing the pipeline structure is to
imagine that each segment consists of an input register
followed by a combinational circuit.
 The register holds the data.
 The combinational circuit performs the sub-operation in the

particular segment.
 A clock is applied to all registers after enough time has elapsed

to perform all segment activity.

Pipelining
 Instruction execution is divided into k segments or stages

 Instruction exits pipe stage k-1 and proceeds into pipe
stage k

 All pipe stages take the same amount of time; called
one processor cycle

 Length of the processor cycle is determined by the
slowest pipe stage

 Instruction execution is divided into k segments or stages
 Instruction exits pipe stage k-1 and proceeds into pipe

stage k
 All pipe stages take the same amount of time; called

one processor cycle
 Length of the processor cycle is determined by the

slowest pipe stage

k segments

Pipelining: Laundry Example
 Small laundry has one washer, one dryer and

one operator.
 Washer takes 30 minutes
 Dryer takes 40 minutes
 “operator folding” takes 20 minutes
 Assume 4 loads /tasks
 It takes (tn) 90 minutes to complete one load
 In other words he will not start a new task

unless he is already done with the previous
task.

 The process is sequential.
 Sequential laundry takes 6 hours for 4 loads.

A B C D

4 loads/tasks
 Small laundry has one washer, one dryer and

one operator.
 Washer takes 30 minutes
 Dryer takes 40 minutes
 “operator folding” takes 20 minutes
 Assume 4 loads /tasks
 It takes (tn) 90 minutes to complete one load
 In other words he will not start a new task

unless he is already done with the previous
task.

 The process is sequential.
 Sequential laundry takes 6 hours for 4 loads.

Washer

Dryer

Operator
folding

Sequential Laundry

A

B

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

(tn)=90

 A better idea would be start the next load washing while the first is drying.
 Then, while the first load was being folded, the second load would dry and a new

load could be put in the washer’

B

C

D

T
a
s
k

O
r
d
e
r

90 min

Efficiently scheduled laundry: Pipelined Laundry
Operator start work ASAP

A

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20
40 40 40

(tp)=40

Pipeline Laundry
 Operator asks for the delivery of loads to the laundry every (tp)40 minutes!?.
 Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

T
a
s
k

O
r
d
e
r

Pipelining Lessons  Multiple tasks operating
simultaneously.

 Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload.

 Pipeline rate limited by slowest
pipeline stage.

 Potential speedup = Number of
pipe stages.

 Unbalanced lengths of pipe
stages reduces speedup.

 Time to “fill” pipeline and time
to “drain” it reduces speedup.

 Pipelining improves performance
by increasing instruction
throughput, as opposed to
decreasing the execution time of
any individual instruction.

A

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

 Multiple tasks operating
simultaneously.

 Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload.

 Pipeline rate limited by slowest
pipeline stage.

 Potential speedup = Number of
pipe stages.

 Unbalanced lengths of pipe
stages reduces speedup.

 Time to “fill” pipeline and time
to “drain” it reduces speedup.

 Pipelining improves performance
by increasing instruction
throughput, as opposed to
decreasing the execution time of
any individual instruction.

A

B

C

D

T
a
s
k

O
r
d
e
r

The washer
waits for the
dryer for 10

minutes

 The pipeline organization will be demonstrated
by means of a simple example.
 To perform the combined multiply and add

operations with a stream of numbers
Ai * Bi + Ci for i = 1, 2, 3, …, 7

 The pipeline organization will be demonstrated
by means of a simple example.
 To perform the combined multiply and add

operations with a stream of numbers
Ai * Bi + Ci for i = 1, 2, 3, …, 7

 Each suboperation is to be implemented in a segment
within a pipeline.

R1  Ai, R2  Bi Input Ai and Bi

R3  R1 * R2, R4  Ci Multiply and input Ci

R5  R3 + R4 Add Ci to product

 Each segment has one or two registers and a
combinational circuit as shown in Fig.2.

 The five registers are loaded with new data every clock
pulse. The effect of each clock is shown in Table 1.

Pipeline organization

 Each suboperation is to be implemented in a segment
within a pipeline.

R1  Ai, R2  Bi Input Ai and Bi

R3  R1 * R2, R4  Ci Multiply and input Ci

R5  R3 + R4 Add Ci to product

 Each segment has one or two registers and a
combinational circuit as shown in Fig.2.

 The five registers are loaded with new data every clock
pulse. The effect of each clock is shown in Table 1.

Example of pipeline processing

Multiplier

R1 R2

Ai Bi Ci

R1 Ai ,R2 Bi Segment 1

Adder

Multiplier

R3 R4

R5

R3 R1 * R2, R4 Ci

R5 R3 + R4

Segment 2

Segment 3

Content of registers in pipeline example

Clock
Pulse
Number

Segment 1

R1 R2

Segment 2

R3 R4

Segment 3

R5

1
2
3
4
5
6
7
8
9

A1
A2
A3
A4
A5
A6
A7
--
--

B1
B2
B3
B4
B5
B6
B7
--
--

--
A1*B1
A2*B2
A3*B3
A4*B4
A5*B5
A6*B6
A7*B7
--

--
C1
C2
C3
C4
C5
C6
C7
--

--
--
A1*B1+C1
A2*B2+C2
A3*B3+C3
A4*B4+C4
A5*B5+C5
A6*B6+C6
A7*B7+C7

1
2
3
4
5
6
7
8
9

A1
A2
A3
A4
A5
A6
A7
--
--

B1
B2
B3
B4
B5
B6
B7
--
--

--
A1*B1
A2*B2
A3*B3
A4*B4
A5*B5
A6*B6
A7*B7
--

--
C1
C2
C3
C4
C5
C6
C7
--

--
--
A1*B1+C1
A2*B2+C2
A3*B3+C3
A4*B4+C4
A5*B5+C5
A6*B6+C6
A7*B7+C7

General considerations

 Any operation that can be decomposed into a sequence of
sub-operations of about the same complexity can be
implemented by a pipeline processor.

 The general structure of a four-segment pipeline is
illustrated in Fig.3.

 We define a task as the total operation performed going
through all the segments in the pipeline.

 The behavior of a pipeline can be illustrated with a space-
time diagram.
 It shows the segment utilization as a function of time.

 Any operation that can be decomposed into a sequence of
sub-operations of about the same complexity can be
implemented by a pipeline processor.

 The general structure of a four-segment pipeline is
illustrated in Fig.3.

 We define a task as the total operation performed going
through all the segments in the pipeline.

 The behavior of a pipeline can be illustrated with a space-
time diagram.
 It shows the segment utilization as a function of time.

Design of a basic pipeline

 Pipeline has two ends, the input end and the output end.
Between these ends, there are multiple stages/segments
such that output of one stage is connected to input of next
stage and each stage performs a specific operation.

 Interface registers are used to hold the intermediate
output between two stages. These interface registers are
also called latch or buffer.

 All the stages in the pipeline along with the interface
registers are controlled by a common clock.

 Pipeline has two ends, the input end and the output end.
Between these ends, there are multiple stages/segments
such that output of one stage is connected to input of next
stage and each stage performs a specific operation.

 Interface registers are used to hold the intermediate
output between two stages. These interface registers are
also called latch or buffer.

 All the stages in the pipeline along with the interface
registers are controlled by a common clock.

Clock   

4-segment pipeline

Si Ristage/segment latch or buffer

ti Stage latency

R1 R2 R3 R4S1 S2 S3 S4
Input

Fig.3

t1 td t2 td t3 td t4 td

what is the clock cycle time (tp)?

Latch delay : td ; tp= max {ti } + td ; Pipeline frequency : f = 1 / tp

output

 The space-time diagrams for execution of 2
instructions with :
i) a four-segment pipeline
ii) a four-segment non-pipeline

are demonstrated in Fig.4 (a).

 .

 The space-time diagrams for execution of 2
instructions with :
i) a four-segment pipeline
ii) a four-segment non-pipeline

are demonstrated in Fig.4 (a).

 .

Non-pipeline

pipeline

space-time diagramsFig.4

Problem

Cosider a k (4) -segment pipeline , with a clock cycle time
tp , used to execute n (6) tasks.

-Draw the space-time diagram and observe:
i) The utilization of the segments.
ii) Time of execution of single task,two tasks and so
iii) Efficiency of the pipeline

Cosider a k (4) -segment pipeline , with a clock cycle time
tp , used to execute n (6) tasks.

-Draw the space-time diagram and observe:
i) The utilization of the segments.
ii) Time of execution of single task,two tasks and so
iii) Efficiency of the pipeline

Space-time diagram for pipeline

1 2 3 4 5 6 7 8 9

1Segment:
Clock cycles

task Ti

1

2

3

4

Segment:
Clock cycles

T1 T2 T3 T4 T5 T6

T1 T2 T3 T4 T5 T6

T1 T2 T3 T4 T5 T6

T1 T2 T3 T4 T5 T6

Fig. space-time diagram Speedup ?
Efficiency ?

 Consider a k-segment pipeline ,with a clock cycle time tp , to
execute n tasks.
 The first task T1 requires a time equal to ktp to complete its operation.
 The remaining (n-1) tasks will be completed after a time equal to (n-

1)tp
 Therefore, to complete n tasks using a k-segment pipeline requires

k+(n-1) clock cycles.

 Consider a non-pipeline unit that performs the same
operation and takes a time equal to tn to complete each task.
 The total time required for n tasks is ntn.

Pipeline Speedup

 Consider a k-segment pipeline ,with a clock cycle time tp , to
execute n tasks.
 The first task T1 requires a time equal to ktp to complete its operation.
 The remaining (n-1) tasks will be completed after a time equal to (n-

1)tp
 Therefore, to complete n tasks using a k-segment pipeline requires

k+(n-1) clock cycles.

 Consider a non-pipeline unit that performs the same
operation and takes a time equal to tn to complete each task.
 The total time required for n tasks is ntn.

Introduction(cont.)
 The speedup of a pipeline processing over an equivalent non-

pipeline processing is defined by the ratio
Sk = ntn /(k+n -1)tp

 If n becomes much larger than (k-1), the speedup becomes
Sk ≈ tn / tp.

 If we assume that the time it takes to process a task is the
same in the pipeline and non-pipeline circuits, i.e., tn = ktp,
the speedup reduces to Sk=k tp /tp≈k.

 This shows that the theoretical maximum speedup that a
pipeline can provide is k, where k is the number of segments
in the pipeline.

 The speedup of a pipeline processing over an equivalent non-
pipeline processing is defined by the ratio

Sk = ntn /(k+n -1)tp
 If n becomes much larger than (k-1), the speedup becomes

Sk ≈ tn / tp.
 If we assume that the time it takes to process a task is the

same in the pipeline and non-pipeline circuits, i.e., tn = ktp,
the speedup reduces to Sk=k tp /tp≈k.

 This shows that the theoretical maximum speedup that a
pipeline can provide is k, where k is the number of segments
in the pipeline.

Problem

 The following numerical example may clarify the sub-
operations performed in each segment (Fig.6)

 The comparator, shift, adder-subtractor, incrementer, and
decrementer in the floating-point pipeline are implemented
with combinational circuits.

 Suppose that the time delays of the four segments are
t1=60ns, t2=70ns, t3=100ns, t4=80ns, and the interface
registers have a delay of tr=10ns
 Pipeline floating-point arithmetic delay: tp=t3+tr=110ns
 Non-pipeline floating-point arithmetic delay:

tn=t1+t2+t3+t4+tr=320ns
 Speedup: 320/110=2.9

 The following numerical example may clarify the sub-
operations performed in each segment (Fig.6)

 The comparator, shift, adder-subtractor, incrementer, and
decrementer in the floating-point pipeline are implemented
with combinational circuits.

 Suppose that the time delays of the four segments are
t1=60ns, t2=70ns, t3=100ns, t4=80ns, and the interface
registers have a delay of tr=10ns
 Pipeline floating-point arithmetic delay: tp=t3+tr=110ns
 Non-pipeline floating-point arithmetic delay:

tn=t1+t2+t3+t4+tr=320ns
 Speedup: 320/110=2.9

 To duplicate the theoretical speed advantage of a pipeline
process by means of multiple functional units, it is necessary
to construct k identical units that will be operating in parallel.

 This is illustrated in Fig.5, where four identical circuits are
connected in parallel.

 Instead of operating with the input data in sequence as in a
pipeline, the parallel circuits accept four input data items
simultaneously and perform four tasks at the same time.

 To duplicate the theoretical speed advantage of a pipeline
process by means of multiple functional units, it is necessary
to construct k identical units that will be operating in parallel.

 This is illustrated in Fig.5, where four identical circuits are
connected in parallel.

 Instead of operating with the input data in sequence as in a
pipeline, the parallel circuits accept four input data items
simultaneously and perform four tasks at the same time.

Speed-up
For e.g., if a pipeline has 4 stages and 5 inputs

Speedup over an equivalent non-pipeline processing ?
What is the maximum value of speedup ?

Sk = nk /(k+n -1)

The speedup value increases with increased number of tasks .

When the number of tasks ‘n’ are significantly larger than k,
that is, n >> k

Lt [Speedup] = K , reaches max value of Sk
n ∞

For e.g., if a pipeline has 4 stages and 5 inputs
Speedup over an equivalent non-pipeline processing ?

What is the maximum value of speedup ?
Sk = nk /(k+n -1)

The speedup value increases with increased number of tasks .

When the number of tasks ‘n’ are significantly larger than k,
that is, n >> k

Lt [Speedup] = K , reaches max value of Sk
n ∞

Efficiency and ThroughputEfficiency and Throughput
Efficiency of the k-stages pipeline :

Efficiency= Ek
Sk

k
= n

k + (n-1)

Indicator of how efficiently the resources of the pipeline are used.

Efficiency = Given speed up / Max speed up = Sk / Sk(max)

Pipeline throughput (also called bandwidth)
It is the measure of how often an instruction exits the pipeline.
It is the average number of results computed in one cycle.
Or the number of input tasks that can performed in one cycle time.

Hk
n

[k + (n-1)]  = n f
k + (n-1)

What is the maximum value of efficiency ? When …?
What is the lowest value of efficiency? When …?

=

i.e Number of instructions / Total time to complete the instructions
What is the maximum value of Hk?

Efficiency = Given speed up / Max speed up = Sk / Sk(max)

Note

 Ek, the speedup per stage, approaches its maximum
value of 1 when n  ∞ .

 When n=1, Ek will have the value 1/k, which is the
lowest obtainable value

 When n ∞, the throughput Hk approaches the
maximum value of one task per clock cycle.

 Pipeline throughput = Efficiency * frequency

 Ek, the speedup per stage, approaches its maximum
value of 1 when n  ∞ .

 When n=1, Ek will have the value 1/k, which is the
lowest obtainable value

 When n ∞, the throughput Hk approaches the
maximum value of one task per clock cycle.

 Pipeline throughput = Efficiency * frequency

Latency, Efficiency and Throughput
Pipeline latency
 Each instruction takes a certain time to complete.
 This is the latency for that operation.
 It's the amount of time between when the instruction is issued and when

it completes.
Pipeline Throughput
 the rate at which operations get executed-
 generally expressed as operations/second or operations/cycle
 Need not be the same as dividing the time span by the latency
In machines with no pipelining:

 The machine cycle must be long enough to complete a single instruction
Throughput = 1/latency , The latency is the same as cycle time
Since each operation executes by itself

 If an instruction is divided into smaller chunks (multiple clock cycles
per instruction) then Throughput is not the same

Pipeline latency
 Each instruction takes a certain time to complete.
 This is the latency for that operation.
 It's the amount of time between when the instruction is issued and when

it completes.
Pipeline Throughput
 the rate at which operations get executed-
 generally expressed as operations/second or operations/cycle
 Need not be the same as dividing the time span by the latency

Problem 1
 Consider the execution of a program of 10/100/15000

instructions by a linear pipeline processor with a clock rate of
25MHz. Assume that the instruction pipeline has 5 stages and
that one instruction is issued per clock cycle. The penalties due
to branch instructions and out-of-sequence executions are
ignored

a) Calculate the speedup factor as compared with non-pipelined
processor

b) What are the efficiency and throughput of this pipelined
processor?

 Consider the execution of a program of 10/100/15000
instructions by a linear pipeline processor with a clock rate of
25MHz. Assume that the instruction pipeline has 5 stages and
that one instruction is issued per clock cycle. The penalties due
to branch instructions and out-of-sequence executions are
ignored

a) Calculate the speedup factor as compared with non-pipelined
processor

b) What are the efficiency and throughput of this pipelined
processor?

From the problem:
n =10,100 and 15000
f= 25MHz
K=5 stages

III) Speedup Sk= (nk)/ (n+k-1)= (1500*5)/(1500+5-1)
=75,000/1504= 4.999

Efficiency=Ek = Sk/k= 4.999/5= 0.999
Throughput=Hk = 0.999*25 MHz= 24.99 MIPS

II)Sk=500/104=4.8076 ;Ek =4.8076/5 =0.9615 ; Hk=24.038 MIPS

I) Sk=50/14 =3.5714 ; Ek =3.5714 /5 =0.7143 ; Hk= 17.857MIPS

From the problem:
n =10,100 and 15000
f= 25MHz
K=5 stages

III) Speedup Sk= (nk)/ (n+k-1)= (1500*5)/(1500+5-1)
=75,000/1504= 4.999

Efficiency=Ek = Sk/k= 4.999/5= 0.999
Throughput=Hk = 0.999*25 MHz= 24.99 MIPS

II)Sk=500/104=4.8076 ;Ek =4.8076/5 =0.9615 ; Hk=24.038 MIPS

I) Sk=50/14 =3.5714 ; Ek =3.5714 /5 =0.7143 ; Hk= 17.857MIPS

Fetch Decode Cal. operand
address

Execute Save
results

Pipeline 1 300 400 350 550 100

pipeline 2 200 150 100 190 140

Problem2.
Consider 5 stages of the processors that have the following latencies (in p sec.)
Assume that when pipelining, each pipeline stage costs 20ps extra for the
registers between pipeline stages.

1) For both Non-pipelined and pipelined processing , Compute :
what is the cycle time? What is the latency of an instruction?
What is the throughput?

2) If you could split one of the pipeline stages into 2 equal halves, which
one would you choose? What is the new cycle time? What is the new
latency? What is the new throughput?

1 (a) Non-pipelined processing;

Because there is no pipelining, the cycle time must allow an
instruction to go through all stages in one cycle.
The latency is the same as cycle time since it takes the
instruction one cycle to go from the beginning of fetch to the
end of writeback (save).
The throughput is defined as 1/CT inst/s.

P 1 : CT = 300 + 400 + 350 + 550 + 100 = 1700ps
Latency = 1700ps
Throughput = 1/1700 inst/ps

P 2 : CT = 200 + 150 + 100 + 190 + 140 = 780ps
Latency = 780ps
Throughput = 1/780 inst/ps

1 (a) Non-pipelined processing;

Because there is no pipelining, the cycle time must allow an
instruction to go through all stages in one cycle.
The latency is the same as cycle time since it takes the
instruction one cycle to go from the beginning of fetch to the
end of writeback (save).
The throughput is defined as 1/CT inst/s.

P 1 : CT = 300 + 400 + 350 + 550 + 100 = 1700ps
Latency = 1700ps
Throughput = 1/1700 inst/ps

P 2 : CT = 200 + 150 + 100 + 190 + 140 = 780ps
Latency = 780ps
Throughput = 1/780 inst/ps

1 (b) Pipelined processing:
Pipelining reduces the cycle time to the length of the longest
stage plus the register delay.
Latency becomes CT*N where N is the number of stages as
one instruction will need to go through each of the stages
and each stage takes one cycle.
The throughput formula remains the same.
P 1. CT = 550 + 20 = 570 ps

Latency = 5 * 570 = 2850ps
Throughput = 1/570 inst/ps

P 2. CT = 200 + 20 = 220 ps
Latency = 5 * 220 = 1100ps
Throughput = 1/220 inst/ps

1 (b) Pipelined processing:
Pipelining reduces the cycle time to the length of the longest
stage plus the register delay.
Latency becomes CT*N where N is the number of stages as
one instruction will need to go through each of the stages
and each stage takes one cycle.
The throughput formula remains the same.
P 1. CT = 550 + 20 = 570 ps

Latency = 5 * 570 = 2850ps
Throughput = 1/570 inst/ps

P 2. CT = 200 + 20 = 220 ps
Latency = 5 * 220 = 1100ps
Throughput = 1/220 inst/ps

2. If you could split one of the pipeline stages into 2 equal halves.

We would want to choose the longest stage to split into half.
The new cycle time becomes the originally 2nd longest stage
length. Calculate latency and throughput correspondingly, but
remember there are now 6 stages instead of 5.
a. CT = 400 + 20 = 420 ps

Latency = 6 * 420 = 2520 ps
Throughput = 1/420 inst/ps

b. CT = 190 + 20 = 210 ps
Latency = 6 * 210 = 1260 ps
Throughput = 1/210 inst/ps

2. If you could split one of the pipeline stages into 2 equal halves.

We would want to choose the longest stage to split into half.
The new cycle time becomes the originally 2nd longest stage
length. Calculate latency and throughput correspondingly, but
remember there are now 6 stages instead of 5.
a. CT = 400 + 20 = 420 ps

Latency = 6 * 420 = 2520 ps
Throughput = 1/420 inst/ps

b. CT = 190 + 20 = 210 ps
Latency = 6 * 210 = 1260 ps
Throughput = 1/210 inst/ps

How the performance of a
pipeline be improved ?

How the performance of a
pipeline be improved ?

How to improve the performance of a pipeline?
1. Make the clock rate faster.
2. Duplicate functional units to allow parallel execution

of instructions.
3. Increase the number of stages in the pipeline
4. Allow all pipeline stages possibly take the same process
time.

Ideally, all stages should be exactly the same length.
5. By avoiding data dependency/unconditional jumps

How to improve the performance of a pipeline?
1. Make the clock rate faster.
2. Duplicate functional units to allow parallel execution

of instructions.
3. Increase the number of stages in the pipeline
4. Allow all pipeline stages possibly take the same process
time.

Ideally, all stages should be exactly the same length.
5. By avoiding data dependency/unconditional jumps

Multiple functional units in parallel

Ii
Ii+1 Ii+2 Ii+3

P1 P2 P3 P4

Fig.5

 There are various reasons why the pipeline cannot operate
at its maximum theoretical rate.
 Different segments may take different times to complete their

suboperation.
 It is not always correct to assume that a nonpipe circuit has

the same time delay as that of an equivalent pipeline circuit.
 There are two areas of computer design where the pipeline

organization is applicable.
 Arithmetic pipeline
 Instruction pipeline

 There are various reasons why the pipeline cannot operate
at its maximum theoretical rate.
 Different segments may take different times to complete their

suboperation.
 It is not always correct to assume that a nonpipe circuit has

the same time delay as that of an equivalent pipeline circuit.
 There are two areas of computer design where the pipeline

organization is applicable.
 Arithmetic pipeline
 Instruction pipeline

Arithmetic Pipeline

Arithmetic pipeline -Introduction
 Applications of arithmetic Pipeline units are usually found in

very high speed computers
 Floating–point operations, multiplication of fixed-point numbers, and

similar computations in scientific problem

 Floating–point operations are easily decomposed into sub-
operations as demonstrated in Sec.5.

 Application of a pipeline unit for floating-point addition and
subtraction is showed in the following:
 The inputs to the floating-point adder pipeline are two normalized

floating-point binary number

 Applications of arithmetic Pipeline units are usually found in
very high speed computers
 Floating–point operations, multiplication of fixed-point numbers, and

similar computations in scientific problem

 Floating–point operations are easily decomposed into sub-
operations as demonstrated in Sec.5.

 Application of a pipeline unit for floating-point addition and
subtraction is showed in the following:
 The inputs to the floating-point adder pipeline are two normalized

floating-point binary number

b

a

BY

AX

2

2





A and B are two fractions that represent the mantissas
a and b are two integers that represent the the exponents

 The floating-point addition and subtraction can be performed in
four segments, as shown in Fig.6.

 The suboperations that are performed in the four segments are:
 Compare the exponents

 The larger exponent is chosen as the exponent of the result.
 Align the mantissas

 The exponent difference determines how many times the mantissa
associated with the smaller exponent must be shifted to the right.

 Perform the operation (Add or subtract the mantissas)
 Normalize the result

 When an overflow occurs, the mantissa of the sum or difference is
shifted right and the exponent incremented by one.

 If an underflow occurs, the number of leading zeros in the mantissa
determines the number of left shifts in the mantissa and the number that
must be subtracted from the exponent.

Floating-point addition
 The floating-point addition and subtraction can be performed in

four segments, as shown in Fig.6.
 The suboperations that are performed in the four segments are:

 Compare the exponents
 The larger exponent is chosen as the exponent of the result.

 Align the mantissas
 The exponent difference determines how many times the mantissa

associated with the smaller exponent must be shifted to the right.
 Perform the operation (Add or subtract the mantissas)
 Normalize the result

 When an overflow occurs, the mantissa of the sum or difference is
shifted right and the exponent incremented by one.

 If an underflow occurs, the number of leading zeros in the mantissa
determines the number of left shifts in the mantissa and the number that
must be subtracted from the exponent.

Floating Point Adder Unit

 Our purpose is to compute the sum
F = A + B = c x 10r = d x 10s

where A= a x 10p ; B= b x 10q

r = max (p,q) and 0.1 ≤ d < 1
 For example:

A=0.9504 x 103

B=0.8200 x 102

a = 0.9504 b= 0.8200
p=3 & q =2 ; r = 3

 Our purpose is to compute the sum
F = A + B = c x 10r = d x 10s

where A= a x 10p ; B= b x 10q

r = max (p,q) and 0.1 ≤ d < 1
 For example:

A=0.9504 x 103

B=0.8200 x 102

a = 0.9504 b= 0.8200
p=3 & q =2 ; r = 3

Floating Point Adder Unit

Operations performed in the four pipeline stages are :
1. Compare the exponents

Compare p and q and choose the largest exponent,
r = max (p,q) and
compute difference of exponents: t = |p – q|
Example:
r = max (p , q) = 3
t = |p-q| = |3-2|= 1

Operations performed in the four pipeline stages are :
1. Compare the exponents

Compare p and q and choose the largest exponent,
r = max (p,q) and
compute difference of exponents: t = |p – q|
Example:
r = max (p , q) = 3
t = |p-q| = |3-2|= 1

Floating Point Adder Unit

2. Align the mantissas
Rewrite the smaller number such that its exponent
matches with the exponent of the larger number.

Shift right the fraction associated with the smaller
exponent by t units to equalize the two exponents
before fraction addition.

 Example:
Smaller exponent, b= 0.8200
Shift right b by 1 (=t) unit is 0.082

2. Align the mantissas
Rewrite the smaller number such that its exponent
matches with the exponent of the larger number.

Shift right the fraction associated with the smaller
exponent by t units to equalize the two exponents
before fraction addition.

 Example:
Smaller exponent, b= 0.8200
Shift right b by 1 (=t) unit is 0.082

Floating Point Adder Unit

3. Perform the operation
Perform fixed-point addition of two fractions to
produce the intermediate sum fraction c

 Example :
a = 0.9504 ; b= 0.082
c = a + b = 0.9504 + 0.082 = 1.0324

3. Perform the operation
Perform fixed-point addition of two fractions to
produce the intermediate sum fraction c

 Example :
a = 0.9504 ; b= 0.082
c = a + b = 0.9504 + 0.082 = 1.0324

Floating Point Adder Unit
4. Normalize the result-(align radix point)

(shift mantissa and adjust exponent)
Count the number of leading zeros (u) in fraction c and
shift left c by u units to produce the normalized fraction
sum d = c x 10u, with a leading bit 1.
Update the large exponent s by subtracting s = (r – u) to
produce the output exponent.

 Example:
c = 1.0324 = 0.10324 x 10(3+1)

u = -1 right shift
d = 0.10324 , s= r – u = 3-(-1) = 4
F = 0.10324 x 104

4. Normalize the result-(align radix point)
(shift mantissa and adjust exponent)

Count the number of leading zeros (u) in fraction c and
shift left c by u units to produce the normalized fraction
sum d = c x 10u, with a leading bit 1.
Update the large exponent s by subtracting s = (r – u) to
produce the output exponent.

 Example:
c = 1.0324 = 0.10324 x 10(3+1)

u = -1 right shift
d = 0.10324 , s= r – u = 3-(-1) = 4
F = 0.10324 x 104

Floating Point Adder Unit

FP adder/subtractor is implemented by using
combinational logic circuits in the following 4 stages:
1. Comparator / Subtractor
2. Shifter
3. Fixed Point Adder-cum-subtractor
4. Normalizer (leading zero counter and shifter)

FP adder/subtractor is implemented by using
combinational logic circuits in the following 4 stages:
1. Comparator / Subtractor
2. Shifter
3. Fixed Point Adder-cum-subtractor
4. Normalizer (leading zero counter and shifter)

Pipeline for floating-point addition/subtraction

Segment 1:

R R

Compare
exponents

by subtraction

t=1

Exponents Mantissas
qp a b

For example:
A=0.9504*103

B=0.8200*102

Segment 2:

Segment 3:

Segment 4:

R

R

R

R

R

R

Adjust
exponent

Normalize
result

Add or subtract
mantissas

Align mantissas

Choose exponent

Compare
exponents

by subtraction

For example:
A=0.9504*103

B=0.8200*102

0.082

r=3

c=0.9504+0.082=1.0324

d=0.10324
s=4

Instruction Pipeline

Instruction Pipeline

 Pipeline processing can occur not only in the data stream
but in the instruction as well.

 Consider a computer with an instruction fetch unit and an
instruction execution unit designed to provide a two-
segment pipeline.

 Computers with complex instructions require other phases
in addition to above phases to process an instruction
completely.

 Pipeline processing can occur not only in the data stream
but in the instruction as well.

 Consider a computer with an instruction fetch unit and an
instruction execution unit designed to provide a two-
segment pipeline.

 Computers with complex instructions require other phases
in addition to above phases to process an instruction
completely.

(FI) (EX)

6 segment Instruction pipeline
1.Fetch the instruction from memory(FI)

Read next instruction into CPU
2. Decode the instruction (DI)

Determine opcode and operand specifiers.
3. Calculate the effective address (CA)

Calculate the effective addresses of all operands
(on branch, calculate target address of branch)

4. Fetch the operands (FO)
Fetch operands from memory or register file

5. Execute the instruction(EX)
Perform the indicated operation

6. Store the result (SR)
Write operand to memory or register file

6 segment Instruction pipeline
1.Fetch the instruction from memory(FI)

Read next instruction into CPU
2. Decode the instruction (DI)

Determine opcode and operand specifiers.
3. Calculate the effective address (CA)

Calculate the effective addresses of all operands
(on branch, calculate target address of branch)

4. Fetch the operands (FO)
Fetch operands from memory or register file

5. Execute the instruction(EX)
Perform the indicated operation

6. Store the result (SR)
Write operand to memory or register file

 Some instructions skip some phases
* Effective address calculation can be done in the part of the decoding phase
* Storage of the operation result into a register is done automatically in the execution phase

4 segment pipeline
 FI: segment 1 that fetches the instruction.
 DA: segment 2 that decodes the instruction and

calculates the effective address.
 FO: segment 3 that fetches the operands.
 EX: segment 4 that executes the instruction.

 FI: segment 1 that fetches the instruction.
 DA: segment 2 that decodes the instruction and

calculates the effective address.
 FO: segment 3 that fetches the operands.
 EX: segment 4 that executes the instruction.

Draw the timing diagrams for:
2 - stage instruction pipeline

3 - stage instruction pipeline
6 - stage instruction pipeline

Draw the timing diagrams for:
2 - stage instruction pipeline

3 - stage instruction pipeline
6 - stage instruction pipeline

Limitations at glance

 There are certain difficulties that will prevent the
instruction pipeline from operating at its maximum rate.

 Different segments may take different times to operate
on the incoming information.

 Some segments are skipped for certain operations.
 Two or more segments may require memory access at

the same time, causing one segment to wait until another
is finished with the memory

 There are certain difficulties that will prevent the
instruction pipeline from operating at its maximum rate.

 Different segments may take different times to operate
on the incoming information.

 Some segments are skipped for certain operations.
 Two or more segments may require memory access at

the same time, causing one segment to wait until another
is finished with the memory

Example: four-segment instruction pipeline
 Assume that:

 The decoding of the instruction can be combined with the
calculation of the effective address into one segment.

 The instruction execution and storing of the result can be
combined into one segment.

 Fig.7 shows how the instruction cycle in the CPU can be
processed with a four-segment pipeline.
 Thus up to four sub-operations in the instruction cycle can

overlap and up to four different instructions can be in
progress of being processed at the same time.

 Assume that:
 The decoding of the instruction can be combined with the

calculation of the effective address into one segment.
 The instruction execution and storing of the result can be

combined into one segment.
 Fig.7 shows how the instruction cycle in the CPU can be

processed with a four-segment pipeline.
 Thus up to four sub-operations in the instruction cycle can

overlap and up to four different instructions can be in
progress of being processed at the same time.

Four-segment pipeline

Fetch instruction
from memory

Decode instruction
and calculate

effective address

Segment 1:

Segment 2:
Decode instruction

and calculate
effective address

Branch

Fetch operand
from memory

Execute instruction

Interrupt

Interrupt
handling

Update PC

Empty pipe

Segment 2:

Segment 3:

Segment 4:

yes

yes

no

noFig .7

 An instruction in the sequence may cause a branch
out of normal sequence.
 In that case the pending operations in the last two segments

are completed and all information stored in the
instruction buffer is deleted.

 Similarly, an interrupt request will cause the pipeline to empty
and start again from a new address value.

 Fig.8 shows the operation (Timing of instruction pipeline)
of the instruction pipeline.

 An instruction in the sequence may cause a branch
out of normal sequence.
 In that case the pending operations in the last two segments

are completed and all information stored in the
instruction buffer is deleted.

 Similarly, an interrupt request will cause the pipeline to empty
and start again from a new address value.

 Fig.8 shows the operation (Timing of instruction pipeline)
of the instruction pipeline.

Timing of instruction pipeline

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

FI DA FO EX

FI DA FO EXInstruction:

Step:

3

4

5

6

7

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI ——

—— —

(Branch)

FI: the segment that fetches an instruction
DA: the segment that decodes the instruction

and calculate the effective address
FO: the segment that fetches the operand
EX: the segment that executes the instruction

Fig.8

Hazard: A condition that causes the pipeline to stall because of some
conflict in the pipe.
Hazards prevent the next instruction in pipe from executing in its turn.
Stalls: The period in which any stages of a pipeline are idle.

They are also referred to as bubbles in the pipeline
Types of hazards

Structural Hazards : contention for same hardware resource
Data Hazards : dependency on earlier instruction for the

correct sequencing of register reads and writes
Control Hazards : branch/jump instructions stall the pipe

until get correct target address into PC

Pipelining Hazards

Hazard: A condition that causes the pipeline to stall because of some
conflict in the pipe.
Hazards prevent the next instruction in pipe from executing in its turn.
Stalls: The period in which any stages of a pipeline are idle.

They are also referred to as bubbles in the pipeline
Types of hazards

Structural Hazards : contention for same hardware resource
Data Hazards : dependency on earlier instruction for the

correct sequencing of register reads and writes
Control Hazards : branch/jump instructions stall the pipe

until get correct target address into PC

Pipeline conflicts
Three types of hazards are possible in pipeline systems
Structural hazards (Resource conflicts) In a situation when two instructions
require the use of the same hardware resource at the same time.
The most common case in which this hazard may arise is in access to memory.

Data Hazards (Data dependency conflicts)
A condition in which either the source or the destination operands of an
instruction are not available at the time expected in the pipeline.
As a result some operation has to be delayed, and the pipeline stalls.
Control /Instruction Hazards (Branch/ Instruction interrupts/Cache miss)
A pipeline be stalled because of a delay in the availability of an instruction
Arise from branch /jump and other instructions that change the value of PC
These instructions stall the pipe until they get correct target address into PC .

Three types of hazards are possible in pipeline systems
Structural hazards (Resource conflicts) In a situation when two instructions
require the use of the same hardware resource at the same time.
The most common case in which this hazard may arise is in access to memory.

Data Hazards (Data dependency conflicts)
A condition in which either the source or the destination operands of an
instruction are not available at the time expected in the pipeline.
As a result some operation has to be delayed, and the pipeline stalls.
Control /Instruction Hazards (Branch/ Instruction interrupts/Cache miss)
A pipeline be stalled because of a delay in the availability of an instruction
Arise from branch /jump and other instructions that change the value of PC
These instructions stall the pipe until they get correct target address into PC .

• Pipeline stall (insert bubble)
• Have 2 memory ports for shared instruction-data

cache-memory (expensive)
• Have separate instruction cache-memory and data

cache-memory

Structural Hazards-Solutions

• Pipeline stall (insert bubble)
• Have 2 memory ports for shared instruction-data

cache-memory (expensive)
• Have separate instruction cache-memory and data

cache-memory

 A difficulty that may caused a degradation of
performance in an instruction pipeline is due to
possible collision of data or address.
 A data dependency occurs when an instruction needs data

that are not yet available.
 An address dependency may occur when an operand

address cannot be calculated because the information
needed by the addressing mode is not available.

 Pipelined computers deal with such conflicts
between data dependencies in a variety of ways.

 Three Generic Data Hazards: RAW,WAR and WOW

Structural Hazards-Solutions
 A difficulty that may caused a degradation of

performance in an instruction pipeline is due to
possible collision of data or address.
 A data dependency occurs when an instruction needs data

that are not yet available.
 An address dependency may occur when an operand

address cannot be calculated because the information
needed by the addressing mode is not available.

 Pipelined computers deal with such conflicts
between data dependencies in a variety of ways.

 Three Generic Data Hazards: RAW,WAR and WOW

Data dependency solutions
 Hardware interlocks :
Detect conflicts and delay the progression of an instruction through
the pipeline until all necessary data is available.
Ex. Delayed load is performed by the compiler, which inserts NOP (no
operation) instructions to ensure that data dependencies are satisfied without
the need for additional hardware

 This approach maintains the program sequence by using hardware to
insert the required delays.

 Operand forwarding : In simple words, if the operands of next instruction is
depending on the previous instruction result, after execution (EX) of previous
instruction, the result will be directly written (copied) to Register location
expected in Next instruction.
 This method requires additional hardware paths through multiplexers as

well as the circuit that detects the conflict.
 Data Hazards Remedy (SW)-Delayed load : (Fig.9)

to delay the loading of the conflicting data by inserting NOP instructions.

 Hardware interlocks :
Detect conflicts and delay the progression of an instruction through
the pipeline until all necessary data is available.
Ex. Delayed load is performed by the compiler, which inserts NOP (no
operation) instructions to ensure that data dependencies are satisfied without
the need for additional hardware

 This approach maintains the program sequence by using hardware to
insert the required delays.

 Operand forwarding : In simple words, if the operands of next instruction is
depending on the previous instruction result, after execution (EX) of previous
instruction, the result will be directly written (copied) to Register location
expected in Next instruction.
 This method requires additional hardware paths through multiplexers as

well as the circuit that detects the conflict.
 Data Hazards Remedy (SW)-Delayed load : (Fig.9)

to delay the loading of the conflicting data by inserting NOP instructions.

35

Data Hazards Remedy - SW

 Software delay (compiler or machine code programming to insert NOPs)
MOVA R1, R5

NOP

NOP

ADD R2, R1, R6

NOP

NOP

ADD R3, R1, R2

MOVA R1 , R5
ADD R2, R1, R6
ADD R2, R1, R6

18

36

Data Hazards Remedy - HW
 Hardware stalls

 Hardware Data Forwarding
• Add an extra path connecting ALU outputs to ALU inputs on the next clock

IF DR E DF W

IF DR E DF W

IF DR E DF W

IF DR

IF

MOVA R1, R5
2, 1,ADD R2 R1 R6

IF DR E DF W2, 1,ADD R2 R1 R6

Hazard detection

Fig.9

Re gister
file

SRC1 SRC2

RSL T

Destination

Source 1

Source 2

(a) Datapath

ALU

E: Ex ecute
(ALU)

W : Write
(Re gister file)

SRC1,SRC2 RSL T

(b) P osition of the source and result registers in the processor pipeline

Figure 8.7. Operand forw arding in a pipelined processor .

F orw arding path

Re gister
file

SRC1 SRC2

RSL T

Destination

Source 1

Source 2

(a) Datapath

ALU

E: Ex ecute
(ALU)

W : Write
(Re gister file)

SRC1,SRC2 RSL T

(b) P osition of the source and result registers in the processor pipeline

Figure 8.7. Operand forw arding in a pipelined processor .

F orw arding path

Fig.9 (a)

Handling of branch instructions

 One of the major problems in operating an instruction
pipeline is the occurrence of branch instructions.
 An unconditional branch always alters the sequential program

flow by loading the program counter with the target address.
 In a conditional branch, the control selects the target

instruction if the condition is satisfied or the next sequential
instruction if the condition is not satisfied.

 Pipelined computers employ following hardware
techniques to minimize the performance degradation
caused by instruction branching.

1) Prefetch target instruction 2) Branch target buffer (BTB)
3) Loop buffer 4) Branch prediction
5) Delayed branch

 One of the major problems in operating an instruction
pipeline is the occurrence of branch instructions.
 An unconditional branch always alters the sequential program

flow by loading the program counter with the target address.
 In a conditional branch, the control selects the target

instruction if the condition is satisfied or the next sequential
instruction if the condition is not satisfied.

 Pipelined computers employ following hardware
techniques to minimize the performance degradation
caused by instruction branching.

1) Prefetch target instruction 2) Branch target buffer (BTB)
3) Loop buffer 4) Branch prediction
5) Delayed branch

Handling of branch instructions (cont.)

1) Prefetch target instruction:
 To prefetch the target instruction in addition to the instruction

following the branch.
 Both are saved until the branch is executed.
 Cache prefetching is a technique used by computer processors to

boost execution performance by fetching instructions or data from
their original storage in slower memory to a faster local memory
before it is actually needed (hence the term 'prefetch'). (Fig.10)

1) Prefetch target instruction:
 To prefetch the target instruction in addition to the instruction

following the branch.
 Both are saved until the branch is executed.
 Cache prefetching is a technique used by computer processors to

boost execution performance by fetching instructions or data from
their original storage in slower memory to a faster local memory
before it is actually needed (hence the term 'prefetch'). (Fig.10)

Instruction Queue and Prefetching

F : Fetch
instruction

Instruction queue
Instruction fetch unit

E:Execute
instruction

W : Write
results

D :
Decode

Fig.10 Use of an instruction queue in the hardware organization

unit

2) Branch target buffer (BTB):
 The BTB is an associative memory included in the fetch segment of

the pipeline.
 Each entry in the BTB consists of the address of a previously

executed branch instruction and the target instruction for that
branch.

 It also stores the next few instructions after the branch target
instruction.

Handling of branch instructions
2) Branch target buffer (BTB):
 The BTB is an associative memory included in the fetch segment of

the pipeline.
 Each entry in the BTB consists of the address of a previously

executed branch instruction and the target instruction for that
branch.

 It also stores the next few instructions after the branch target
instruction.

Have two pipelines
When a conditional branch is recognized, the target of the branch
is prefetced, in addition to the instruction following the branch
• Prefetch each branch into a separate pipeline
• Use appropriate pipeline

3) Loop buffer:
 Maintained by fetch stage of pipeline
 This is a small very high speed register file .
 Contains the most recently fetched instructions, in sequence.
 If a branch is to be taken, the hardware first cheeks whether the

branch target is within the buffer. If so, the next instruction is fetched
from the buffer

 Very good for small loops or iterations
 If the loop buffer is large enough to contain all the instructions in a

loop, then those instructions need to be fetched from memory only
once, for the first iteration. For subsequent iterations, all the needed
instructions are already in the buffer.

Handling of branch instructions
3) Loop buffer:
 Maintained by fetch stage of pipeline
 This is a small very high speed register file .
 Contains the most recently fetched instructions, in sequence.
 If a branch is to be taken, the hardware first cheeks whether the

branch target is within the buffer. If so, the next instruction is fetched
from the buffer

 Very good for small loops or iterations
 If the loop buffer is large enough to contain all the instructions in a

loop, then those instructions need to be fetched from memory only
once, for the first iteration. For subsequent iterations, all the needed
instructions are already in the buffer.

4) Branch prediction
 A pipeline with branch prediction uses some additional logic to guess

the outcome of a conditional branch instruction before it is executed.
 Reducing the branch penalty requires the branch address to be

computed earlier in the pipeline
 Typically the Fetch unit has dedicated h/w which will identify the

branch target address as quick as possible after an instruction is
fetched

 Various techniques can be used to predict whether a branch will be
taken or not (Fig.11). The most common techniques are:
• Static Techniques
• Dynamic Techniques

Handling of branch instructions
4) Branch prediction
 A pipeline with branch prediction uses some additional logic to guess

the outcome of a conditional branch instruction before it is executed.
 Reducing the branch penalty requires the branch address to be

computed earlier in the pipeline
 Typically the Fetch unit has dedicated h/w which will identify the

branch target address as quick as possible after an instruction is
fetched

 Various techniques can be used to predict whether a branch will be
taken or not (Fig.11). The most common techniques are:
• Static Techniques
• Dynamic Techniques

Static Techniques:
a) Predict never taken - continue to fetch sequentially. If the branch is
not taken, then there is no wasted fetches.
b) Predict always taken - fetch from branch target as soon as possible
c) Predict by opcode - compiler helps by having different opcodes based
on likely outcome of the branch
Dynamic Techniques
try to improve prediction by recording history of conditional branch
d) Taken / Not Taken switch - one or more history bits to reflect
whether the most recent executions of an instruction were taken or not.
e) Branch-History Table - small, fully-associative cache to store
information about most recently executed branch instructions.

Static Techniques:
a) Predict never taken - continue to fetch sequentially. If the branch is
not taken, then there is no wasted fetches.
b) Predict always taken - fetch from branch target as soon as possible
c) Predict by opcode - compiler helps by having different opcodes based
on likely outcome of the branch
Dynamic Techniques
try to improve prediction by recording history of conditional branch
d) Taken / Not Taken switch - one or more history bits to reflect
whether the most recent executions of an instruction were taken or not.
e) Branch-History Table - small, fully-associative cache to store
information about most recently executed branch instructions.

Branch early prediction

X

Figure 8.9. Branch timing.

F 1 D 1 E 1 W 1

I 2 (Branch)

I 1

1 2 3 4 5 6 7Clock c ycle

F 2 D 2

F 3 X

F k D k E k

F k+ 1 D k+ 1

I 3

I k

I k+ 1

W k

E k+ 1

(b) Branch address computed in Decode stage

F 1 D 1 E 1 W 1

I 2 (Branch)

I 1

1 2 3 4 5 6 7Clock c ycle

F 2 D 2

F 3

F k D k E k

F k+ 1 D k+ 1

I 3

I k

I k+ 1

W k

E k+ 1

(a) Branch address computed in Ex ecute stage

E 2

D 3

F 4 XI 4

8
T ime

T ime

- Branch penalty

- Reducing the penalty
X

Figure 8.9. Branch timing.

F 1 D 1 E 1 W 1

I 2 (Branch)

I 1

1 2 3 4 5 6 7Clock c ycle

F 2 D 2

F 3 X

F k D k E k

F k+ 1 D k+ 1

I 3

I k

I k+ 1

W k

E k+ 1

(b) Branch address computed in Decode stage

F 1 D 1 E 1 W 1

I 2 (Branch)

I 1

1 2 3 4 5 6 7Clock c ycle

F 2 D 2

F 3

F k D k E k

F k+ 1 D k+ 1

I 3

I k

I k+ 1

W k

E k+ 1

(a) Branch address computed in Ex ecute stage

E 2

D 3

F 4 XI 4

8
T ime

T ime

Fig.11

Fig.11

Fig.11

Handling of branch instructions

5) Delayed branch:
The compiler detects the branch instructions and rearranges the
machine language code sequence by inserting useful instructions that
keep the pipeline operating without interruptions.
 A procedure employed in most RISC processors.
 e.g. no-operation instruction

5) Delayed branch:
The compiler detects the branch instructions and rearranges the
machine language code sequence by inserting useful instructions that
keep the pipeline operating without interruptions.
 A procedure employed in most RISC processors.
 e.g. no-operation instruction

RISC and CISC

CISC : Complex Instruction Set Computer
RISC : Reduced Instruction Set Computer

CISC
CISC instructions sets some common characteristics:

 A 2-operand format, where instructions have a source and a
destination. Register to register, register to memory, and
memory to register commands. Multiple addressing modes for
memory, including specialized modes for indexing through
arrays

 Variable length instructions where the length often varies
according to the addressing mode

 Instructions which require multiple clock cycles to execute.
 Easy to program.
 Makes efficient use of memory

CISC instructions sets some common characteristics:
 A 2-operand format, where instructions have a source and a

destination. Register to register, register to memory, and
memory to register commands. Multiple addressing modes for
memory, including specialized modes for indexing through
arrays

 Variable length instructions where the length often varies
according to the addressing mode

 Instructions which require multiple clock cycles to execute.
 Easy to program.
 Makes efficient use of memory

Characteristics of CISC

 A large of instructions typically from 100 to 250 instructions.
 A large variety of addressing modes typically from 5 to 200

different modes.
 Complex and efficient machine instructions.
 Variable-length instruction formats.
 Instructions that manipulate operands in memory.
 Extensive addressing capabilities for memory operations.
 Relatively few registers.

 A large of instructions typically from 100 to 250 instructions.
 A large variety of addressing modes typically from 5 to 200

different modes.
 Complex and efficient machine instructions.
 Variable-length instruction formats.
 Instructions that manipulate operands in memory.
 Extensive addressing capabilities for memory operations.
 Relatively few registers.

CISC Disadvantages

 Instruction set & chip hardware become more complex with each
generation of computers.

 Many instructions as possible could be stored in memory with
the least possible wasted space, individual instructions could be
of almost any length - this means that different instructions will
take different amounts of clock time to execute, slowing down
the overall performance of the machine.

 Instruction set & chip hardware become more complex with each
generation of computers.

 Many instructions as possible could be stored in memory with
the least possible wasted space, individual instructions could be
of almost any length - this means that different instructions will
take different amounts of clock time to execute, slowing down
the overall performance of the machine.

What is RISC ?
RISC architecture utilizes a small, highly-optimized set of
instructions instead of specialized set of instructions often
found CISC.

 Characteristic of most RISC processors:
 one cycle execution time: RISC processors have a CPI (clock

per instruction) of one cycle. This is due to the optimization
of each instruction on the CPU and a technique called
PIPELINING

 pipelining: a techique that allows for simultaneous execution
of parts, or stages, of instructions to more efficiently process
instructions;

 large number of registers: the RISC design philosophy
generally incorporates a larger number of registers to
prevent in large amounts of interactions with memory

 Fixed-length, easily decoded instructions
 Intelligent compiler

RISC architecture utilizes a small, highly-optimized set of
instructions instead of specialized set of instructions often
found CISC.

 Characteristic of most RISC processors:
 one cycle execution time: RISC processors have a CPI (clock

per instruction) of one cycle. This is due to the optimization
of each instruction on the CPU and a technique called
PIPELINING

 pipelining: a techique that allows for simultaneous execution
of parts, or stages, of instructions to more efficiently process
instructions;

 large number of registers: the RISC design philosophy
generally incorporates a larger number of registers to
prevent in large amounts of interactions with memory

 Fixed-length, easily decoded instructions
 Intelligent compiler

RISC Characteristics
 Reduced instruction set.
 Relatively few instructions.
 Relatively few addressing modes.
 Less complex, simple instructions.
 All operations done within the registers of the CPU.
 Small number of suboperations, with each being executed in

one clock cycle
 Efficient Instruction pipeline
 Uses simple decoder
 Hardwired control unit and machine instructions.
 Few addressing schemes for memory operands with only two

basic instructions, LOAD and STORE
 Memory access limited to LOAD and STORE instructions

 Reduced instruction set.
 Relatively few instructions.
 Relatively few addressing modes.
 Less complex, simple instructions.
 All operations done within the registers of the CPU.
 Small number of suboperations, with each being executed in

one clock cycle
 Efficient Instruction pipeline
 Uses simple decoder
 Hardwired control unit and machine instructions.
 Few addressing schemes for memory operands with only two

basic instructions, LOAD and STORE
 Memory access limited to LOAD and STORE instructions

RISC Pipeline

Characteristics of RISC
 To use an efficient instruction pipeline

 Suboperations to be executed in one clock cycle.
 Use of fixed-length instruction format to make decoding time

same as the register selection.
 RISC instruction pipeline can be implemented with 2 and 3

segments.
 One segment fetches the instruction from program

memory
 The other segment executes the instruction in the ALU
 Third segment may be used to store the result of the ALU

operation in a destination register

 To use an efficient instruction pipeline
 Suboperations to be executed in one clock cycle.
 Use of fixed-length instruction format to make decoding time

same as the register selection.
 RISC instruction pipeline can be implemented with 2 and 3

segments.
 One segment fetches the instruction from program

memory
 The other segment executes the instruction in the ALU
 Third segment may be used to store the result of the ALU

operation in a destination register

Characteristics of RISC (cont.)
 The data transfer instructions in RISC are limited to load and store

instructions.
 These instructions use register indirect addressing. They usually

need three or four stages in the pipeline.
 To prevent conflicts between a memory access to fetch an

instruction and to load or store an operand, most RISC
machines use two separate buses with two memories.

 Cache memory: operate at the same speed as the CPU clock
 Ability to execute instructions at the rate of one per clock cycle.

 In effect, it is to start each instruction with each clock cycle and
to pipeline the processor to achieve the goal of single-cycle
instruction execution.

 RISC can achieve pipeline segments, requiring just one clock
cycle.

 The data transfer instructions in RISC are limited to load and store
instructions.
 These instructions use register indirect addressing. They usually

need three or four stages in the pipeline.
 To prevent conflicts between a memory access to fetch an

instruction and to load or store an operand, most RISC
machines use two separate buses with two memories.

 Cache memory: operate at the same speed as the CPU clock
 Ability to execute instructions at the rate of one per clock cycle.

 In effect, it is to start each instruction with each clock cycle and
to pipeline the processor to achieve the goal of single-cycle
instruction execution.

 RISC can achieve pipeline segments, requiring just one clock
cycle.

Characteristics of RISC (cont.)
RISC processors rely on the efficiency of the compiler to

detect and minimize the delays encountered with these
problems / difficulties associated with data conflicts and
branch penalties.

RISC processors rely on the efficiency of the compiler to
detect and minimize the delays encountered with these
problems / difficulties associated with data conflicts and
branch penalties.

3 Segment Instruction RISC Pipeline

Thee are three types of instructions:
 The data manipulation instructions: operate on data

in processor registers
 The data transfer instructions:
 The program control instructions:

Thee are three types of instructions:
 The data manipulation instructions: operate on data

in processor registers
 The data transfer instructions:
 The program control instructions:

Hardware operation
 The control section fetches the instruction from program

memory into an instruction register.
 The instruction is decoded at the same time that the

registers needed for the execution of the instruction are
selected.

 The processor unit consists of a number of registers and an
arithmetic logic unit (ALU).

 A data memory is used to load or store the data from a
selected register in the register file.

 The instruction cycle can be divided into three sub
operations and implemented in three segments

 The control section fetches the instruction from program
memory into an instruction register.
 The instruction is decoded at the same time that the

registers needed for the execution of the instruction are
selected.

 The processor unit consists of a number of registers and an
arithmetic logic unit (ALU).

 A data memory is used to load or store the data from a
selected register in the register file.

 The instruction cycle can be divided into three sub
operations and implemented in three segments

RISC pipeline organization
 I: Instruction fetch

 Fetches the instruction from program memory

 A: ALU operation
 The instruction is decoded and an ALU operation is performed.
 It performs an operation for a data manipulation instruction.
 It evaluates the effective address for a load or store instruction.
 It calculates the branch address for a program control instruction.

 E: Execute instruction
 Directs the output of the ALU to one of three destinations, depending on

the decoded instruction.
 It transfers the result of the ALU operation into a destination register in

the register file.
 It transfers the effective address to a data memory for loading or storing.
 It transfers the branch address to the program counter.

 I: Instruction fetch
 Fetches the instruction from program memory

 A: ALU operation
 The instruction is decoded and an ALU operation is performed.
 It performs an operation for a data manipulation instruction.
 It evaluates the effective address for a load or store instruction.
 It calculates the branch address for a program control instruction.

 E: Execute instruction
 Directs the output of the ALU to one of three destinations, depending on

the decoded instruction.
 It transfers the result of the ALU operation into a destination register in

the register file.
 It transfers the effective address to a data memory for loading or storing.
 It transfers the branch address to the program counter.

RISC Pipelining Basics
1. ALU operation with register input and output

two phases of execution for register based instructions
 I: Instruction fetch
 E: Execute

2. Register to memory or memory to register operation
For load and store there will be three phases
 I: Instruction fetch
 E: Execute

 Calculate memory address
 D: Memory

1. ALU operation with register input and output
two phases of execution for register based instructions

 I: Instruction fetch
 E: Execute

2. Register to memory or memory to register operation
For load and store there will be three phases
 I: Instruction fetch
 E: Execute

 Calculate memory address
 D: Memory

1. Data Manipulation Instructions
I: Instruction Fetch
A: Decode, Read Registers, ALU Operations
E: Write a Register

2. Load and Store Instructions
I: Instruction Fetch
A: Decode, Evaluate Effective Address
E: Register-to-Memory or Memory-to-Register

3. Program Control Instructions
I: Instruction Fetch
A: Decode, Evaluate Branch Address
E: Write Register(PC)

RISC -Three-Stage Instruction Pipeline
1. Data Manipulation Instructions

I: Instruction Fetch
A: Decode, Read Registers, ALU Operations
E: Write a Register

2. Load and Store Instructions
I: Instruction Fetch
A: Decode, Evaluate Effective Address
E: Register-to-Memory or Memory-to-Register

3. Program Control Instructions
I: Instruction Fetch
A: Decode, Evaluate Branch Address
E: Write Register(PC)

Optimization of RISC Pipelining

Delayed branch
 Leverages branch that does not take effect until

after execution of following instruction

Delayed Load
 Consider the operation of the following four instructions:

 There will be a data conflict in instruction 3 because the
operand in R2 is not yet available in the A segment.

 This can be seen from the timing of the pipeline shown in Fig.
12(a).
 The E segment in clock cycle 4 is in a process of placing the

memory data into R2.
 The A segment in clock cycle 4 is using the data from R2.

 compiler has to make sure that the instruction following the
load instruction uses the data fetched from memory.

1. LOAD: R1  M[address 1]
2. LOAD: R2  M[address 2]
3. ADD: R3  R1 +R2
4. STORE: M[address 3]  R3

 Consider the operation of the following four instructions:

 There will be a data conflict in instruction 3 because the
operand in R2 is not yet available in the A segment.

 This can be seen from the timing of the pipeline shown in Fig.
12(a).
 The E segment in clock cycle 4 is in a process of placing the

memory data into R2.
 The A segment in clock cycle 4 is using the data from R2.

 compiler has to make sure that the instruction following the
load instruction uses the data fetched from memory.

Delayed Load(cont.)

 This concept of delaying the use of the data loaded from
memory is referred to as delayed load.

 Fig. 12(b) shows the same program with a no-op instruction
inserted after the load to R2 instruction.

 Thus the no-op instruction is used to advance one clock
cycle in order to compensate for the data conflict in the
pipeline.

 The advantage of the delayed load approach is that the
data dependency is taken care of by the compiler rather
than the hardware.

 This concept of delaying the use of the data loaded from
memory is referred to as delayed load.

 Fig. 12(b) shows the same program with a no-op instruction
inserted after the load to R2 instruction.

 Thus the no-op instruction is used to advance one clock
cycle in order to compensate for the data conflict in the
pipeline.

 The advantage of the delayed load approach is that the
data dependency is taken care of by the compiler rather
than the hardware.

3-segment pipeline time-space diagram
1 2 3 4 5 6Clock cycles:

1. Load R1

2. Load R2

3. Add R1+R2

4. Store R3

I A E

I A E

I A E

I A ELOAD: R1 M[address 1]
LOAD: R2 M[address 2]
ADD: R3 R1 +R2
STORE: M[address 3] R3 1 2 3 4 5 6 7

4. Store R3

1. Load R1

2. Load R2

3. No-operation

4. Add R1+R2

5. Store R3

I A E

I A E

I A E

I A E

I A E

I A E

12(a) Pipeline timing with data conflict

12 (b) Pipeline timing with delayed load

LOAD: R1 M[address 1]
LOAD: R2 M[address 2]
ADD: R3 R1 +R2
STORE: M[address 3] R3

Delayed Branch

 The method used in most RISC processors is to rely on the
compiler to redefine the branches so that they take effect at
the proper time in the pipeline. This method is referred to as
delayed branch.

 The compiler is designed to analyze the instructions before and
after the branch and rearrange the program sequence by
inserting useful instructions in the delay steps.

 It is up to the compiler to find useful instructions to put after
the branch instruction. Failing that, the compiler can insert no-
op instructions.

 The method used in most RISC processors is to rely on the
compiler to redefine the branches so that they take effect at
the proper time in the pipeline. This method is referred to as
delayed branch.

 The compiler is designed to analyze the instructions before and
after the branch and rearrange the program sequence by
inserting useful instructions in the delay steps.

 It is up to the compiler to find useful instructions to put after
the branch instruction. Failing that, the compiler can insert no-
op instructions.

An Example of Delayed Branch
 Ex.The program of delayed branch:

 In Fig.13(a) the compiler inserts two no-op instructions
after the branch.
 The branch address X is transferred to PC in clock cycle

7.
 The program in Fig.13(b) is rearranged by placing the add

and subtract instructions after the branch instruction.
 PC is updated to the value of X in clock cycle 5.

Load from memory to R1
Increment R2
Add R3 to R4
Subtract R5 from R6
Branch to address X

 Ex.The program of delayed branch:

 In Fig.13(a) the compiler inserts two no-op instructions
after the branch.
 The branch address X is transferred to PC in clock cycle

7.
 The program in Fig.13(b) is rearranged by placing the add

and subtract instructions after the branch instruction.
 PC is updated to the value of X in clock cycle 5.

Load from memory to R1
Increment R2
Add R3 to R4
Subtract R5 from R6
Branch to address X

Example:
delayed branch

1 2 3 4 5 6 7

1. Load

2. Increment

I A E

I A E

8 9 10Clock cycles:

Load from memory to R1
Increment R2
Add R3 to R4
Subtract R5 from R6
Branch to address X

2. Increment

3. Add

4. Subtract

5. Branch to X

I A E

I A E

I A E

I A E

6. No-operation

8. Instruction in X

7. No-operation

I A E

I A E

I A E

13 (a) Using no-operation instructions

Example:
delayed branch(cont.)

1 2 3 4 5 6 7

1. Load

2. Increment

I A E

I A E

8Clock cycles:

Load from memory to R1
Increment R2
Add R3 to R4
Subtract R5 from R6
Branch to address X

2. Increment

3. Branch to X

4. Add

5. Subtract

I A E

I A E

I A E

I A E

6. Instruction in X I A E

13 (b) Rearranging the instructions

 Compiler analyzes the instructions before and after the branch and
rearranges the program sequence by inserting useful instructions in the
delay steps

Vector Processing

Introduction

 In many science and engineering applications, the problems can
be formulated in terms of vectors and matrices that lend
themselves to vector processing.

 Computers with vector processing capabilities are in demand in
specialized applications. e.g.
 Long-range weather forecasting
 Petroleum explorations
 Seismic data analysis
 Medical diagnosis
 Artificial intelligence and expert systems
 Image processing
 Mapping the human genome

 In many science and engineering applications, the problems can
be formulated in terms of vectors and matrices that lend
themselves to vector processing.

 Computers with vector processing capabilities are in demand in
specialized applications. e.g.
 Long-range weather forecasting
 Petroleum explorations
 Seismic data analysis
 Medical diagnosis
 Artificial intelligence and expert systems
 Image processing
 Mapping the human genome

Introduction(cont.)

To achieve the required level of high performance it is
necessary
 to utilize the fastest and most reliable hardware
 apply innovative procedures

(vector and parallel processing techniques)

To achieve the required level of high performance it is
necessary
 to utilize the fastest and most reliable hardware
 apply innovative procedures

(vector and parallel processing techniques)

Vector Operations
 Many scientific problems require arithmetic operations on large

arrays of numbers.
 A vector is an ordered set of a 1-D array of data items.
 A vector V of length n is represented as a row vector by

V=[v1,v2,…,vn].
 To examine the difference between a conventional scalar

processor and a vector processor, consider the following
Fortran DO loop:

DO 20 I = 1, 100
20 C(I) = B(I) + A(I)

 Many scientific problems require arithmetic operations on large
arrays of numbers.

 A vector is an ordered set of a 1-D array of data items.
 A vector V of length n is represented as a row vector by

V=[v1,v2,…,vn].
 To examine the difference between a conventional scalar

processor and a vector processor, consider the following
Fortran DO loop:

DO 20 I = 1, 100
20 C(I) = B(I) + A(I)

Vector Operations(cont.)

 This is implemented in machine language by the
following sequence of operations.

 A computer capable of vector processing eliminates
the overhead associated with the time it takes to fetch
and execute the instructions in the program loop.

C(1:100) = A(1:100) + B(1:100)

Initialize I=0
20 Read A(I)

Read B(I)
Store C(I) = A(I)+B(I)
Increment I = I + 1
If I 100 go to 20
Continue

 This is implemented in machine language by the
following sequence of operations.

 A computer capable of vector processing eliminates
the overhead associated with the time it takes to fetch
and execute the instructions in the program loop.

C(1:100) = A(1:100) + B(1:100)

Initialize I=0
20 Read A(I)

Read B(I)
Store C(I) = A(I)+B(I)
Increment I = I + 1
If I 100 go to 20
Continue

Vector Operations (cont.)

 A possible instruction format for a vector instruction is
shown in Fig.14.
 This assumes that the vector operands reside in memory.

 It is also possible to design the processor with a large
number of registers and store all operands in registers
prior to the addition operation.
 The base address and length in the vector instruction specify

a group of CPU registers.

 A possible instruction format for a vector instruction is
shown in Fig.14.
 This assumes that the vector operands reside in memory.

 It is also possible to design the processor with a large
number of registers and store all operands in registers
prior to the addition operation.
 The base address and length in the vector instruction specify

a group of CPU registers.

Vector Processor

Operation
code

Base address
source 1

Base address
source 2

Base address
destination

Vector
length

Instruction format

Operation
code

Base address
source 1

Base address
source 2

Base address
destination

Vector
length

Fig.14.

Matrix Multiplication
 The multiplication of two n x n matrices consists of n2

inner products or n3 multiply-add operations.
 Consider, for example, the multiplication of two 3 x 3 matrices A and B.

 C =A * B and C= C11 + C22 + C33

 c11= a11b11+ a12b21+ a13b31 : C22= a21b12+ a22b22+ a23b32

 C22= a21b12+ a22b22+ a23b32

 This requires 3 multiplication and (after initializing c11 to 0) 3 additions.

 In general, the inner product consists of the sum of k
product terms of the form C =
A1B1+A2B2+A3B3+…+AkBk.
 In a typical application k may be equal to 100 or even 1000.

 The inner product calculation on a pipeline vector
processor is shown in Fig.12.

 The multiplication of two n x n matrices consists of n2

inner products or n3 multiply-add operations.
 Consider, for example, the multiplication of two 3 x 3 matrices A and B.

 C =A * B and C= C11 + C22 + C33

 c11= a11b11+ a12b21+ a13b31 : C22= a21b12+ a22b22+ a23b32

 C22= a21b12+ a22b22+ a23b32

 This requires 3 multiplication and (after initializing c11 to 0) 3 additions.

 In general, the inner product consists of the sum of k
product terms of the form C =
A1B1+A2B2+A3B3+…+AkBk.
 In a typical application k may be equal to 100 or even 1000.

 The inner product calculation on a pipeline vector
processor is shown in Fig.12.

Pipeline for calculating an inner product







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Source
A

Source
B

Multiplier
pipeline

Adder
pipeline







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Fig.12

C

Pipeline for calculating an inner product







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Product pi=AiBi

Source
A

Source
B

Multiplier
pipeline

Adder
pipeline







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Fig.12 (a)-After 4 units of time

C
p4p3p2p1

Pipeline for calculating an inner product







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Product pi=AiBi

Source
A

Source
B

Multiplier
pipeline

Adder
pipeline







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Fig.12 (a)-After 8 units of time

C
p4p3p2p1

Pipeline for calculating an inner product







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Product pi=AiBi

Source
A

Source
B

Multiplier
pipeline

Adder
pipeline







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Fig.12 (a)-After 4 units of time

C
p4p3p2p1

Pipeline for calculating an inner product







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Product pi=AiBi

p4 p3 p2 p1

Source
A

Source
B

Multiplier
pipeline

Adder
pipeline







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Fig.12 (a)-After 8 units of time

C
p5p6p7p8

Pipeline for calculating an inner product







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Product pi=AiBi

C= p1+p5 +p9+p13
+ p2+p6 +p10+p14
+ p3+p7 +p11+p15
+ p4+p8 +p12+p16

p4 p3 p2 p1

Source
A

Source
B

Multiplier
pipeline

Adder
pipeline







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Fig.12 (a)-After 9 units of time C=p1

p5p6p7p8

and so on

+p5

C= p1+p5 +p9+p13
+ p2+p6 +p10+p14
+ p3+p7 +p11+p15
+ p4+p8 +p12+p16

Memory Interleaving
 Pipeline and vector processors often require simultaneous

access to memory from two or more sources.
 An instruction pipeline may require the fetching of an instruction and an

operand at the same time from two different segments.
 An arithmetic pipeline usually requires two or more operands to enter the

pipeline at the same time.
 Instead of using two memory buses for simultaneous access, the

memory can be partitioned into a number of modules connected to
a common memory address and data buses.

 The advantage of a modular memory is that it allows the use of a
technique called interleaving.
 A memory module is a memory array together with its own address and

data registers.
 Fig.13 shows a memory unit with four modules.

 Pipeline and vector processors often require simultaneous
access to memory from two or more sources.
 An instruction pipeline may require the fetching of an instruction and an

operand at the same time from two different segments.
 An arithmetic pipeline usually requires two or more operands to enter the

pipeline at the same time.
 Instead of using two memory buses for simultaneous access, the

memory can be partitioned into a number of modules connected to
a common memory address and data buses.

 The advantage of a modular memory is that it allows the use of a
technique called interleaving.
 A memory module is a memory array together with its own address and

data registers.
 Fig.13 shows a memory unit with four modules.

Memory Organization-Multiple modules

AR AR AR AR

Address bus
   

AR

DR

Memory
array

AR

DR

Memory
array

AR

DR

Memory
array

AR

DR

Memory
array

Data bus
Fig.13

Memory Interleaving(cont.)
 Memory interleaving is the technique used to increase the

throughput.
 The core idea is to split the memory system into independent banks,

which can answer read or write requests independently in parallel.
 In an interleaved memory, different sets of addresses are assigned to

different memory modules.
 By staggering the memory access, the effective memory cycle time

can be reduced by a factor close to the number of modules.
 The ultimate purpose is to match the memory bandwidth with the bus

bandwidth and with the processor bandwidth.
 There are two-address format for memory interleaving the

address space.
Low order interleaving and High order interleaving

.

 Memory interleaving is the technique used to increase the
throughput.

 The core idea is to split the memory system into independent banks,
which can answer read or write requests independently in parallel.

 In an interleaved memory, different sets of addresses are assigned to
different memory modules.

 By staggering the memory access, the effective memory cycle time
can be reduced by a factor close to the number of modules.

 The ultimate purpose is to match the memory bandwidth with the bus
bandwidth and with the processor bandwidth.

 There are two-address format for memory interleaving the
address space.

Low order interleaving and High order interleaving

.

Lower order interleaving (LOI)
 LOI spreads contiguous memory location across the modules horizontally.
 This implies that the low order bits of the memory address are used to

identify the memory module.
 High order bits are the word addresses (displacement) within each module .
High order interleaving
 HOI uses the high order bits as the module address or to identify the

memory module.
 Low order bits are the word addresses within each module.
Where is it implemented ?
 Implemented on main memory , Which is slow as compared to Cache.

And Main memory having less bandwidth.
Memory bandwidth

 Is the rate at which data can be read and write into a memory by a
processor. Memory bandwidth is usually expressed in units of
bytes/sec.

Lower order interleaving (LOI)
 LOI spreads contiguous memory location across the modules horizontally.
 This implies that the low order bits of the memory address are used to

identify the memory module.
 High order bits are the word addresses (displacement) within each module .
High order interleaving
 HOI uses the high order bits as the module address or to identify the

memory module.
 Low order bits are the word addresses within each module.
Where is it implemented ?
 Implemented on main memory , Which is slow as compared to Cache.

And Main memory having less bandwidth.
Memory bandwidth

 Is the rate at which data can be read and write into a memory by a
processor. Memory bandwidth is usually expressed in units of
bytes/sec.

 The main memory is built with multiple modules (chips).
 These memory modules are connected to a bus and other resources

(Processor, I/O) are also connected memory module having memory
addresses.

 Each memory module return one word per cycle.
 It is possible to present different addresses to different memory modules.
 So the Parallel access of multiple word can be done concurrently (one

cycle).
 This called parallel access in term of pipelined fashion.
 Main memory is often block-accessed at consecutive addresses.
 Block access is needed for fetching a sequence of instructions or for

accessing a linearly ordered data structure.
 Each block access may correspond to the size of a cache block.
 Therefore it is desirable to design the memory to facilitate the block access

of contiguous words.

Modules and addresses in Main Memory
 The main memory is built with multiple modules (chips).
 These memory modules are connected to a bus and other resources

(Processor, I/O) are also connected memory module having memory
addresses.

 Each memory module return one word per cycle.
 It is possible to present different addresses to different memory modules.
 So the Parallel access of multiple word can be done concurrently (one

cycle).
 This called parallel access in term of pipelined fashion.
 Main memory is often block-accessed at consecutive addresses.
 Block access is needed for fetching a sequence of instructions or for

accessing a linearly ordered data structure.
 Each block access may correspond to the size of a cache block.
 Therefore it is desirable to design the memory to facilitate the block access

of contiguous words.

Supercomputers

 A commercial computer with vector instructions and pipelined
floating-point arithmetic operations is referred to as a
supercomputer.
 To speed up the operation, the components are packed tightly together

to minimize the distance that the electronic signals have to travel.
 This is augmented by instructions that process vectors and

combinations of scalars and vectors.
 A supercomputer is a computer system best known for its high

computational speed, fast and large memory systems, and the
extensive use of parallel processing.
 It is equipped with multiple functional units and each unit has its own

pipeline configuration.
 It is specifically optimized for the type of numerical calculations

involving vectors and matrices of floating-point numbers.

 A commercial computer with vector instructions and pipelined
floating-point arithmetic operations is referred to as a
supercomputer.
 To speed up the operation, the components are packed tightly together

to minimize the distance that the electronic signals have to travel.
 This is augmented by instructions that process vectors and

combinations of scalars and vectors.
 A supercomputer is a computer system best known for its high

computational speed, fast and large memory systems, and the
extensive use of parallel processing.
 It is equipped with multiple functional units and each unit has its own

pipeline configuration.
 It is specifically optimized for the type of numerical calculations

involving vectors and matrices of floating-point numbers.

 A Main memory formed with m= 2a memory modules.
 With each module contains w=2b words of memory cells.
Low order interleaving
 lower order ‘a’ bits are used to identify the memory module.
 higher order ‘b’ bits are the word addresses (displacement)

within each module.
High order interleaving
 higher order ‘a’ bits are used as the module address
 low order ‘b’ bits are the word address in each module.

 A Main memory formed with m= 2a memory modules.
 With each module contains w=2b words of memory cells.
Low order interleaving
 lower order ‘a’ bits are used to identify the memory module.
 higher order ‘b’ bits are the word addresses (displacement)

within each module.
High order interleaving
 higher order ‘a’ bits are used as the module address
 low order ‘b’ bits are the word address in each module.

Low order interleaving

Array Processors

Introduction

 An array processor is a processor that performs
computations on large arrays of data.

 The term is used to refer to two different types of
processors.
 Attached array processor:

 Is an auxiliary processor.
 It is intended to improve the performance of the host computer

in specific numerical computation tasks.
 SIMD array processor:

 Has a single-instruction multiple-data organization.
 It manipulates vector instructions by means of multiple functional

units responding to a common instruction.

 An array processor is a processor that performs
computations on large arrays of data.

 The term is used to refer to two different types of
processors.
 Attached array processor:

 Is an auxiliary processor.
 It is intended to improve the performance of the host computer

in specific numerical computation tasks.
 SIMD array processor:

 Has a single-instruction multiple-data organization.
 It manipulates vector instructions by means of multiple functional

units responding to a common instruction.

Attached Array Processor
 Its purpose is to enhance the performance of the

computer by providing vector processing for complex
scientific applications.
 Parallel processing with multiple functional units

 Fig.14 shows the interconnection of an attached array
processor to a host computer.

 The objective of the attached array processor is to
provide vector manipulation capabilities to a
conventional computer at a fraction of the cost of
supercomputer.

 Its purpose is to enhance the performance of the
computer by providing vector processing for complex
scientific applications.
 Parallel processing with multiple functional units

 Fig.14 shows the interconnection of an attached array
processor to a host computer.

 The objective of the attached array processor is to
provide vector manipulation capabilities to a
conventional computer at a fraction of the cost of
supercomputer.

Attached Array Processor with host computer

General-purpose
computer

Input-output
interface

Attached array
processor

Main memory Local memory
High-speed memory-to-

memory bus

Fig.14.

SIMD Array Processor

 An SIMD array processor is a computer with multiple
processing units operating in parallel.

 A general block diagram of an array processor is shown
in Fig.15.
 It contains a set of identical processing elements (PEs), each having a

local memory M.
 Each PE includes an ALU, a floating-point arithmetic unit, and working

registers.
 Vector instructions are broadcast to all PEs simultaneously.

 Masking schemes are used to control the status of each
PE during the execution of vector instructions.
 Each PE has a flag that is set when the PE is active and reset when the

PE is inactive.

 An SIMD array processor is a computer with multiple
processing units operating in parallel.

 A general block diagram of an array processor is shown
in Fig.15.
 It contains a set of identical processing elements (PEs), each having a

local memory M.
 Each PE includes an ALU, a floating-point arithmetic unit, and working

registers.
 Vector instructions are broadcast to all PEs simultaneously.

 Masking schemes are used to control the status of each
PE during the execution of vector instructions.
 Each PE has a flag that is set when the PE is active and reset when the

PE is inactive.

SIMD Array Processor organization

Master control
unit

PE1

PE2

M1

M2



Master control
unit

Main memory

PE2

PE3

PEn

M2

M3

Mn

















Fig.15

SIMD Array Processor(cont.)

 Foe example, the ILLIAC IV computer developed at
the University of Illinois and manufactured by the
Burroughs Corp.
 Are highly specialized computers.
 They are suited primarily for numerical problems that can

be expressed in vector or matrix form.

 Foe example, the ILLIAC IV computer developed at
the University of Illinois and manufactured by the
Burroughs Corp.
 Are highly specialized computers.
 They are suited primarily for numerical problems that can

be expressed in vector or matrix form.

